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ABSTRACT
In systems of autonomous self-interested agents, in which
agents’ neighbourhoods are defined by their connections to
others, cooperation can arise through observation of the be-
haviour of neighbours to determine values of trust and rep-
utation. While there are many techniques for encouraging
cooperative behaviour within such systems, they often re-
quire a centralised authority or rely on reciprocity that is
not always available. In response, this paper presents a de-
centralised mechanism to supporting cooperation without
requiring reciprocity. The mechanism is based on tag-based
cooperation, supplemented by assessing neighbourhood con-
text and using simple rewiring to cope with cheaters. In
particular, the paper makes two key contributions. First, it
provides a technique for increasing resilience in the face of
malicious behaviour by enabling individuals to rewire their
connections to others and so modify their neighbourhoods.
Second, it provides an empirical analysis of several strategies
for rewiring, evaluating them through simulations.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence — Multiagent systems

General Terms
Experimentation, Algorithms, Reliability

Keywords
Cooperation, Tags, Rewiring, Reputation, P2P

1. INTRODUCTION
Many existing approaches for supporting cooperation in

decentralised environments are based on reciprocity, namely
the notion that repeated encounters imply that altruistic or
selfish acts performed by an agent may eventually be re-
turned. Reciprocity can be direct or indirect. Direct reci-
procity occurs in situations where two agents have repeat
interactions, and over time each provides assistance to the
other. Indirect reciprocity exists in situations where agents
are likely to interact with others whose behaviour with third
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parties they have previously observed. Trust and reputation
are arguably the most widespread mechanisms for support-
ing cooperation in decentralised systems. However, for an
agent to have sufficient information to make effective deci-
sions using trust (based on its own interactions) the envi-
ronment must contain a high degree of direct reciprocity.
Similarly, for reputation (based on the recommendations of
others) to be effective, the environment must contain suffi-
cient indirect reciprocity to provide the information needed
to determine an individual’s reputation.

As systems get larger, more open, and more dynamic, the
degree of direct and indirect reciprocity typically reduces,
since the likelihood of repeat interactions between any two
individuals reduces, as does the likelihood of agents having
observed the interactions of others with third parties. P2P
systems and the Internet exhibit these characteristics which,
in a network context, correspond to moderate (or large) dis-
tances between nodes, and low clustering coefficients [15].
Consequently, it becomes more difficult to support cooper-
ation effectively in such environments. In addition, in the
presence of individuals seeking to accept the benefits of co-
operation without reciprocating, the problem is made even
harder. In environments with a low degree of reciprocity
there is the temptation for self-interested agents to cheat by
taking advantage of cooperation from others, but not coop-
erating in return. The lack of reciprocity means that trust
and reputation are not appropriate solutions. In response,
in this paper we describe an approach that supports cooper-
ation without requiring reciprocity, and present a technique
to improve resilience to malicious behaviour by enabling in-
dividuals to change their connections to others, i.e. rewire
their neighbourhood. We provide alternative strategies for
rewiring and evaluate their effectiveness using simulations.
Our approach builds on the tag-based approach proposed by
Riolo, Cohen and Axelrod (RCA) [18], and Griffiths’ mod-
ification to RCA’s approach [5], in which an assessment of
neighbourhood context is used to improve cooperation. Ex-
isting work has given little consideration to coping with ma-
licious behaviour, which we address in this paper.

This paper does not focus on a specific application do-
main. Instead, we consider an abstract environment in which
agents are required to interact, but in which there is little
direct or indirect reciprocity. We assume that each agent
has a neighbourhood defined by its connections to others,
such that where there is a connection there is the possibility
for interaction. These connections are assumed to be bidi-
rectional. We also assume that agents are able to observe
the general nature of their neighbours’ behaviour (namely,
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whether they are acting cooperatively or not), although not
the specific details (in terms of with whom they interact and
for what task). This environment reflects the form of many
real-world settings. For example, in ad hoc communication
networks any two nodes are unlikely to have many repeat
interactions and, although nodes can observe the behaviour
of others (e.g. in terms of packet forwarding), it is unlikely
that there will be sufficient observations of a given node of
interest to determine a meaningful assessment of reputation.
Similarly, in a P2P content sharing system, repeat interac-
tions between a given pair of nodes are relatively few, and a
node is unlikely to have many observations of the behaviour
of a specific individual. However, nodes do have the ability
to observe the general nature of their neighbours’ behaviour
(e.g. in terms of whether they are providing content).

2. BACKGROUND
Mechanisms for enabling cooperation without reciprocity

have been of interest for many years to biologists and social
scientists investigating how cooperative societies of selfish
individuals might evolve [3, 4]. One approach that has re-
ceived particular interest is the idea that cooperation might
be based on the recognition of cultural artefacts or traits [1,
4, 7, 8]. In particular, there have been promising results for
using simple observable traits, or tags [9], as cultural arte-
facts to engender cooperation where no reciprocity exists [2,
18, 20]. Tag-based cooperation has recently been shown as
successfully able support cooperation in a multi-agent sys-
tem, in the form of a simulated P2P network [6]. Existing
work on tags, however, has given little consideration to the
possibility that some members of the population may devi-
ate from the rules of the system, by not cooperating when
the rules of the system dictate that they should, and become
“cheaters” — the issue that we address in this paper. Before
we introduce our mechanism for coping with cheating agents,
however, we give an overview of tag-based cooperation.

RCA’s tag-based approach to cooperation has been the
starting point for much of the work in this area, and it is
the base of the mechanism presented in this paper. In RCA’s
approach an individual’s decision to cooperate is based on
whether an arbitrary tag associated with it, representing
some observable trait, is sufficiently similar to that associ-
ated with a potential recipient [18]. The approach is illus-
trated using a simple donation scenario in which each agent
acts as a potential donor with a number of randomly se-
lected neighbours. Should an agent opt to donate, it incurs
a cost c, and the recipient gains a benefit b (it is assumed
that b > c), otherwise both receive nothing . Each agent i is
initially randomly assigned a tag τi and a tolerance thresh-
old Ti with a uniform distribution from [0, 1]. An agent A
will donate to a potential recipient B if B’s tag is within A’s
tolerance threshold TA, namely |τA − τB | ≤ TA. Agents are
selected to act as potential donors in P interaction pairings,
after which the population is reproduced proportionally to
their relative scores, such that more successful agents pro-
duce more offspring. Each offspring is subject to mutation,
so that with a small probability a new (random) tag is re-
ceived or Gaussian noise (with mean 0 and a small standard
deviation) is added to the tolerance.

RCA have shown that a high cooperation rate can be
achieved with this simple approach, without requiring reci-
procity. Their results show cycles in which a cooperative
population is established, which is then invaded by a mu-
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Figure 1: HE’s rewiring approach showing an origi-
nal and rewired neighbourhood.

tant whose tag is similar (and so receives donations) but
has a low tolerance (and so does not donate). Such mutants
initially do well, leading to them taking over the population
subsequently lowering the overall rate of cooperation, but
eventually the mutant tag and tolerance become the most
common and cooperation again becomes the norm [18].

Hales and Edmonds (HE) apply RCA’s approach in a P2P
setting, with two main changes [6]. First, RCA’s learning
interpretation of the reproduction phase is adopted, mean-
ing that for reproduction each agent compares itself to an-
other at random and adopts the other’s tag and tolerance if
the other’s score is higher (again subject to potential muta-
tions) [18]. Second, HE interpret a tag as being an agent’s
set of neighbours in the P2P network, i.e. an agent’s connec-
tions to others in the population. In RCA’s work each agent
is connected to each other agent. and there is no correspond-
ing notion of neighbourhood. In HE’s model, the process of
an agent adopting another’s tag is equivalent to it dropping
all of its own connections, and copying the connections of
the other agent (also adding a connection to the other agent
itself) [6]. This process is illustrated in Figure 1 which shows
agent A dropping its own connections and adopting those of
agent B. Again, there is also a small probability of muta-
tion, interpreted as replacing a randomly selected neighbour
with another node in the network.

Using simulations, HE have shown this approach to be
promising in situations where agents are given free reign to
rewire the network, and replace all of their connections at
each reproduction phase. This rewiring is an all-or-nothing
operation, in that although an agent can adopt a completely
new set of neighbours (replacing its existing neighbourhood),
it cannot modify its existing neighbourhood. Our view is
that such extreme rewiring, where the neighbourhood topol-
ogy might completely change with each new generation, is
not practicable in all scenarios. For example, in a commu-
nication network this would imply that all existing routes
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become outdated and need to be re-established, while in a
content sharing system an agent would lose all information
about the content available in its neighbourhood. In this
paper we consider a less extreme situation, in which agents
are able to rewire a proportion of their neighbourhood.

Both RCA and HE assume that agents do not deviate
from the rules of the system, i.e. they assume that there are
no cheaters. We define a cheater to be an agent that ac-
cepts donations, but will not donate to others, even if the
“rules” of the system dictate that it should. We assume that
if a cheater reproduces, then its offspring will also cheat.
In this paper we assume that cheaters do not falsify their
tags or additionally manipulate their tolerance thresholds.
In standard tag-based cooperation, introducing even a small
proportion of cheaters into the population causes coopera-
tion to collapse [5]. Our aim in this paper is to provide
a mechanism that copes with the presence of cheaters but,
unlike trust and reputation, does not rely on reciprocity. In
common with RCA we view tags as simple arbitrary observ-
able traits, and motivated by HE’s work we allow agents to
partially modify their neighbourhood connections. Building
on Griffiths’ context awareness modification to RCA’s ap-
proach [5], we show that by allowing agents to modify their
neighbour connections we are able to significantly improve
cooperation in the presence of cheaters.

3. ENHANCING COOPERATION
We consider a population of agents, each of which has (bi-

directional) connections to n neighbours, such that agents
are only able to interact with their neighbours (although for
reproduction we still consider the population as a whole).
Unlike RCA and HE, we assume that a proportion of the
population are cheaters and will not cooperate with others
even when their tags are within the tolerance threshold. In
this paper, we adopt the donation scenario used by RCA,
but we note that this could be extended to more realistic
settings, for example in the manner of HE to a P2P sce-
nario [6]. We use RCA’s parameter values for benefit and
cost, of b = 1 and c = 0.1 [18] (the addition of a cost of
0.1 avoids negative payoffs [16]). Each agent i is initially
assigned an arbitrary tag τi and tolerance Ti with uniform
distribution from [0, 1]1. Our approach uses two techniques
for improving cooperation in the presence of cheaters: aug-
menting RCA’s approach with neighbourhood context as-
sessment (first introduced in [5]) and the use of neighbour-
hood rewiring, which is the main contribution of this paper.

3.1 Context Awareness
Our first technique uses Griffiths’ modification of RCA’s

model, in which agents assess their neighbourhood context in
terms of how cooperative they perceive their neighbours to
be [5]. The donation decision is modified so that an agent’s
assessment of its neighbourhood context becomes a factor
in the decision to donate. This approach relies on the as-
sumption that agents can observe their neighbours’ dona-
tion behaviour, and is realistic in many real-world settings.
For example, in a communication network nodes can detect
whether packets have been forwarded, and in a file sharing

1More strictly we apply a lower bound of −10−6 to tolerance
to address Roberts and Sherratt’s concerns regarding agents
with identical tags being forced to cooperate [19]. This also
allows the population to contain non-cooperative agents of
the form considered by Masuda and Ohtsuki [12].

system nodes can observe whether others’ downloads have
completed. These observations allow an agent to assess its
neighbourhood context, i.e. how cooperative its neighbours
are. Agents are given a fixed length FIFO memory to record
the last l donation behaviours observed for each neighbour.
When the neighbour donates, an observation value of +1 is
recorded, and when it does not −1 is recorded. This mem-
ory is fairly sparse, since the number of interactions is small
compared to the number of agents, and so the overhead in-
curred is relatively small (2 bits per observation for n × P
observations, where n is the number of neighbours and P
the number of pairings).

In order to assess its neighbourhood context, an agent
considers each of its n neighbours in turn, and determines
the contribution to the context assessment ci of neighbour
i, which is simply the proportion of observed interactions in
which the neighbour donated, given by:

ci =

8><>:
Pli

j=1

oj
i , if oj

i > 0
0, otherwise

li
, if li > 0

0, otherwise

(1)

where oj
i represents the j’th observation of neighbour i, and

li is the number of observations recorded of i’s donation
behaviour (li < l). By considering each of its n neighbours,
agent A’s assessment of its current neighbourhood context
CA is given by:

CA =

Pn
i=1 ci

n
(2)

This context assessment can be used to influence the do-
nation decision. The intuition is that that agents “expect”
that by donating they are more likely to receive a future do-
nation from some other (observing) agent. However, because
the number of interactions is small compared to the num-
ber of agents, this is a weak notion of indirect reciprocity,
which is insufficient to support a “traditional” notion of rep-
utation. One agent’s donation to another is unlikely to be
directly repaid or directly observed by a third party, so that
there is little direct or indirect reciprocity. Instead, con-
text assessment gives a general impression of the donation
behaviour in a neighbourhood, indicating the likelihood of
receiving future donations, and hence can be viewed as a
weak notion of indirect reciprocity. An agent’s assessment
of its neighbourhood context is incorporated into the model
by adapting the decision to donate, such that both tolerance
and neighbourhood context are considered (provided some
minimum number of observations have been made). Thus,
an agent A will donate to B if:

|τA − τB | ≤ (1− γ).TA + γ.CA (3)

The parameter γ, which we call the context influence, al-
lows us to tune the technique. If γ = 0, the technique is
identical to RCA’s method, while if γ = 1 then the donation
decision is determined solely by an agent’s assessment of its
neighbourhood context.

We adopt RCA’s learning interpretation of reproduction
(as do HE), such that after a fixed number of interaction
pairings P an agent compares itself to another selected at
random from the population. If the other agent is more
successful, then its tag and tolerance are copied (subject to a
small probability of mutation), meaning that the other agent
reproduces. Otherwise the tag and tolerance are unchanged,
meaning that the first agent itself reproduces.
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Figure 2: The effect of context on donation.

The effect of including context assessment in the decision
to donate is illustrated in Figure 2, which shows the average
donation rate across the population after 100 generations
(by which time the donation rate has stabilised) in a popu-
lation containing 10% cheaters against the context influence
γ. The results in Figure 2 were obtained using a population
of 100 agents, a neighbourhood size of n = 10, and 10 in-
teractions per agent per generation (P = 10). The leftmost
point, with γ = 0, is equivalent to RCA’s approach with
no consideration of context, and the rightmost point, with
γ = 1, uses only context assessment in the donation deci-
sion. Without context assessment, RCA’s approach gives
a donation rate of below 40%, while using a context influ-
ence of γ > 0.3 we see a significant rise in donation rate,
achieving over 60% for γ ≥ 0.5. It is clear that considering
context in the donation decision can provide an increase in
the donation rate. In this paper, our focus is on the rewiring
technique and strategies, and so we do not include further
results on this part of the mechanism (a discussion of the
relevant factors can be found in [5]). In the remainder of
the paper, therefore, we assume γ = 0.5 unless stated oth-
erwise, since in general we have found that this provides
a significant improvement in donation rate, and that there
are relatively small gains in using larger values (although
we briefly discuss the effect of context influence on rewiring
when considering the results presented in Figure 8).

3.2 Simple Rewiring
Our second technique enables agents to rewire their net-

work neighbourhoods, such that after reproduction an agent
is able to remove a proportion λ (the rewire proportion) of
connections to neighbours, and replace them with connec-
tions to new neighbours. This approach is motivated by
HE’s promising results, but unlike HE we do not assume
that an agent can replace all of its existing connections
since, as discussed above, this is likely to be impractical
in real-world settings. Our hypothesis is that (i) cooper-
ation can be improved by removing connections to agents
that are not cooperative, and (ii) adding new connections
based on the experiences of others can improve cooperation.
We investigate this hypothesis by considering the following
strategies, which are in increasing order of sophistication:

(i) random: λ neighbours are removed at random, and λ
new neighbours are added at random. (ii) randomReplace-
Worst: the λ worst neighbours are removed, and λ new
neighbours are added at random. (iii) individualReplace-
Worst: the λ worst neighbours are removed, and then the
best λ neighbours of the agent’s best neighbour are added.
Additional randomly selected are neighbours added if neces-
sary to prevent the neighbourhood shrinking due to duplica-
tion (an agent has at most one connection to another indi-
vidual, with duplicate connections having no meaning). (iv)
groupReplaceWorst: the λ worst neighbours are removed,
and then the best (non-duplicate) neighbour from each of
the agent’s λ best neighbours are added. The neighbours
are considered in descending rank order and, for each, the
best non-duplicate neighbour is added. Again, additional
randomly selected neighbours are added if necessary, to en-
sure that each agent remains connected to n others.

For randomReplaceWorst, individualReplaceWorst and gr-
oupReplaceWorst we determine which connections to remove,
by using the contribution to the context assessment ci for
each neighbour i (as defined in Equation 1) as the metric
for ranking agents. Thus, an agent will remove connections
to the λ agents that have the lowest ci values. Similarly,
for individualReplaceWorst and groupReplaceWorst we also
use the contribution to the context assessment to determine
which connections to add. If the ci values of two or more
agents are equal then one is selected arbitrarily. The param-
eter λ, which we call the rewire proportion, determines the
extent to which the network is rewired each generation. Note
that the latter two strategies can be thought of as simplistic
reputation mechanisms, in that agents update their connec-
tions based on the experiences of others. However, unlike
typical reputation mechanisms, the assessment is based on
relatively little information, which is not predicated on a
notion of (direct or indirect) reciprocity [11, 17].

The individualReplaceWorst and groupReplaceWorst stra-
tegies are illustrated in Figure 3. If A’s neighbours in or-
der of preference are B,C,D,E, F , and 2 neighbours are
to be replaced (λ = 2), then the connections to E and F
will be dropped. If B’s neighbours, in preference order, are
H,D, I,G,A then for individualReplaceWorst A will add H
and I to its neighbourhood, as shown in (b). D is not added
since it is already in A’s neighbourhood and so the next pre-
ferred neighbour is used. For groupReplaceWorst, shown in
(c), A will add a connection to H (from B’s neighbours) and
to C’s most preferred neighbour, which we suppose is J .

4. STRATEGY EVALUATION
Using the PeerSim P2P simulator2, we have built a simu-

lation of our model and have experimented with several al-
ternative configurations. In this section we give an overview
of the main findings and explore the parameters in turn. Un-
less stated otherwise, the results presented here represent an
average of 10 runs using a population of 100 agents, a neigh-
bourhood size of n = 10 (using a regular random network
as the initial topology), 10 pairings per agent per generation
(P = 10), and a context influence of γ = 0.5. After repro-
duction, the probability of mutating the tag by selecting a
new random value is 0.001, and there is a 0.001 probability
of adding Gaussian noise to the tolerance (with mean 0 and
standard deviation of 0.01).

2http://peersim.sourceforge.net/
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Figure 3: A’s original neighbourhood (a) and the result of rewiring using individualReplaceWorst (b), and
groupReplaceWorst (c).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Do
na

tio
n 

ra
te

groupReplaceWorst
individualReplaceWorst
randomReplaceWorst
random
RCA with context assessment (context influence 0.5)
RCA's standard approach

Rewire proportion λ

Figure 4: Rewiring strategies (10% cheaters).

Figure 4 compares the donation rate for a population
containing 10% cheaters using the four alternative rewiring
strategies with different rewire proportions. RCA’s stan-
dard approach and Griffiths’ context assessment modifica-
tion to RCA’s approach (without rewiring) are included for
comparison. The lower of the two dashed horizontal lines
represents RCA’s standard approach, and the upper dashed
horizontal line represents RCA’s approach with context as-
sessment. These correspond to the leftmost (γ = 0.0) and
middle points (γ = 0.5) of the results shown in Figure 2.
The first conclusion that can be drawn from Figure 4 is that
although the random strategy improves upon RCA’s stan-
dard approach, it performs worse than context assessment
alone. Second, it is clear that the more sophisticated strate-
gies that replace the worst λ neighbours perform better than
using context assessment alone, except for very high replace-
ment proportions. For λ ≤ 0.7 there is little difference in
the performance of the three strategies. (For clarity we
have omitted the standard deviations from Figure 4, but for
λ ≤ 0.7 the strategies are within one standard deviation of
each other.) For λ > 0.7 the two most sophisticated strate-
gies of individualReplaceWorst and groupReplaceWorst give
the best performance, and there is not a significant difference
between them in this experimental configuration, although
the latter gives a marginally better donation rate. As dis-
cussed above, in a real-world system such high degrees of
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Figure 5: Rewiring strategies (20% cheaters).

rewiring may not be possible, and in many situations the
rightmost side of the graph may not be reachable due to an
upper limit on λ of less than 1. In all of our simulations, the
random strategy is consistently significantly worse than the
other rewiring strategies, and often worse than context as-
sessment alone; we therefore we omit it from the remaining
results presented in this paper.

In order to investigate further the performance of the
strategies, we varied the proportion of cheaters present. Fig-
ures 5 and 6 give the results for 20% and 30% cheaters re-
spectively, with RCA’s standard approach and context as-
sessment shown for comparison. RCA’s standard approach
again performs the worst, followed by context assessment.
As the proportion of cheaters is increased, the donation rate
reduces for each of the strategies, as we would expect. Again,
there is relatively little difference in performance between in-
dividualReplaceWorst and groupReplaceWorst, although on
average the latter gives a marginal improvement. With 30%
cheaters, randomReplaceWorst is significantly worse than
the more sophisticated strategies for λ > 0.3. Therefore,
adding new connections based on the experiences of oth-
ers, rather than at random, is beneficial. The highest do-
nation rate for both 20% and 30% cheaters is achieved with
groupReplaceWorst and λ = 0.6. Statistical significance test
results are omitted due to space constraints, but the bene-
fits of individualReplaceWorst and groupReplaceWorst over
other strategies are significant for all λ. For moderately
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Figure 6: Rewiring strategies (30% cheaters).
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Figure 7: Standard deviation in donation rate (30%
cheaters).

high rewire proportions (≈ 0.6..0.9) with ≤ 20% cheaters
groupReplaceWorst is significantly better, otherwise the dif-
ference is marginal.

To further illustrate the performance of the strategies we
have plotted the standard deviation in donation rate for ran-
domReplaceWorst, individualReplaceWorst, and groupRep-
laceWorst in Figure 7 (for a population containing 30% cheat-
ers). From these results it is clear that the standard devia-
tion of the randomReplaceWorst strategy is the highest, and
that for a rewire proportion of λ ≥ 0.4 groupReplaceWorst
has a slightly lower standard deviation than individualRe-
placeWorst. Taking into account both the donation rates ob-
tained for the various cheater proportions and the standard
deviations, the best donation rate is likely to be achieved
with groupReplaceWorst using a rewire proportion of λ ≥ 0.4
(although on average the improvement over individualRe-
placeWorst is < 3%).

In relation to our hypothesis that (i) cooperation can be
improved by removing connections to agents that are not
cooperative, and (ii) adding new connections based on the
experiences of others can improve cooperation, we see these
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Figure 8: The effect of context influence.

results as confirmation that this is indeed the case. Cer-
tainly, each of the strategies that removes connections to the
worst λ neighbours perform better than those strategies that
do not utilise such rewiring. The evidence for the latter part
of the hypothesis is less strong, although we see a clear im-
provement in donation rate for individualReplaceWorst and
groupReplaceWorst over randomReplaceWorst where there
are higher proportions of cheaters, and in particular where
there are larger rewire proportions (λ > 0.4). We also see
a lower standard deviation for groupReplaceWorst and in-
dividualReplaceWorst. However, for lower proportions of
cheaters, or low rewiring proportions, the advantage in using
the experiences of others is marginal.

4.1 Context influence
We have performed simulations to compare the use of

rewiring with context assessment against the use of rewiring
alone, and with different weightings given to context influ-
ence, i.e. exploring different values for γ. This enables us
to evaluate whether our results arise from the combination
of rewiring and context assessment or purely from rewiring
alone. The results are shown in Figure 8, in which the
groupReplaceWorst strategy is used (we have obtained sim-
ilar results for the other strategies). It can be seen that
the worst donation rate is achieved with a context influence
γ = 0.0, which is equivalent to using RCA’s standard ap-
proach with the addition of rewiring. As more influence is
given to the context, the donation rate improves, but there
is no clear best value for γ, with all values used provid-
ing an improvement over not using neighbourhood context
assessment. This supports our use of γ = 0.5 as a reason-
able parameter value in our other simulations. Our conclu-
sion from these results is that both the context assessment
and rewiring techniques improve the donation rate, but that
there are no specific values for γ and λ that perform best in
all situations. In general, we find that values in the middle
of the range perform well, i.e. γ ≈ 0.5 and 0.4 ≤ λ ≤ 0.8 but
we suggest that tuning through empirical experimentation
is needed for any given configuration.

4.2 Interaction pairings
The number of interaction pairings per generation, P ,
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Figure 9: Varying pairings per generation.
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Figure 10: Varying population size (n = 10).

also affects the donation rate, as can be seen in Figure 9
(we omit randomReplaceWorst from the remaining results
since it gives lower performance). The donation rate with
groupReplaceWorst is fairly stable for more than 10 pairings
(i.e. P ≥ 10) with an average donation rate of 66%, while
for P < 10 the average donation rate drops to 61%. With
individualReplaceWorst we see a fairly stable donation rate
for P ≤ 25 of 64%, which reduces for P > 25 to 54%. Over-
all, groupReplaceWorst performs better than individualRe-
placeWorst, by 3.6% on average, although the difference is
most pronounced with larger number of pairings (P > 25).
The groupReplaceWorst strategy also has a slightly lower
standard deviation than individualReplaceWorst, of around
8% compared to 11%. Thus, groupReplaceWorst is again
preferred to individualReplaceWorst (although the improve-
ment is marginal for P ≤ 25), and on average the highest
donation rate is obtained for 10 ≤ P ≤ 25.

4.3 Population size
Population size has relatively little influence on the dona-

tion rate obtained, as shown in Figure 10, in which we fix
the neighbourhood size to n = 10 and vary the population

Strategy n
5 10 25 50

groupReplaceWorst 0.68 0.69 0.68 0.57
individualReplaceWorst 0.60 0.68 0.63 0.52

Table 1: Donation rate for various neighbourhood
sizes, with 100 agents and 30% cheaters.

size between 100 and 500. It can be seen that, although
there are fluctuations, there is not a significant change in
donation rate as the population size is increased. Again,
groupReplaceWorst gives a marginally higher average dona-
tion rate (67%) than individualReplaceWorst (65%), with a
lower standard deviation (of 4% compared to 7%). Based
on these results our view is that population size itself is
not a major factor in the donation rate achieved, but that
groupReplaceWorst is (marginally) the preferred strategy.

4.4 Neighbourhood size
We have also explored the effect of neighbourhood size on

the donation rate. Table 1 shows the donation rate using
individualReplaceWorst and groupReplaceWorst with neigh-
bourhood sizes of n = 5, 10, 25 and 50 for a population size
of 100 with 30% cheaters. For groupReplaceWorst there is
relatively little difference in donation rate with n ≤ 25, but
n = 50 gives a reduction in donation rate of around 10%. For
individualReplaceWorst, however, there is more variation in
donation rate depending on the neighbourhood size, with the
highest donation rate of 68% being achieved for n = 10, but
lower rates achieved for other values, and again the donation
rate is significantly reduced for n = 50. From these results
we see that groupReplaceWorst gives better results than in-
dividualReplaceWorst for a wider range of neighbourhood
sizes. In both cases the best donation rate is achieved for
n = 10, although for groupReplaceWorst the advantage over
a neighbourhood size of 5 or 25 is marginal.

4.5 Summary of evaluation
We have found that our results support the hypothesis

that (i) cooperation can be improved by removing connec-
tions to agents that are not cooperative, and (ii) adding new
connections based on the experiences of others can improve
cooperation. Furthermore, we see that groupReplaceWorst
gives the best donation rate on average, closely followed by
individualReplaceWorst. In situations with low proportions
of cheaters, or where only low degrees of rewiring are possible
then randomReplaceWorst also improves donation rate, but
in general it does not perform as well as the strategies that
consider the experiences of others when adding connections.
In the presence of cheaters the random strategy improves
the donation rate over RCA’s standard approach, but does
not perform as well as context assessment alone. In general,
moderate settings for the parameters perform the best, with
a context influence of γ ≈ 0.5 and a rewire proportion of
0.4 ≤ λ ≤ 0.8. Similarly, the best results are achieved for a
moderate number of interaction pairings per generation of
10 ≤ P ≤ 25. We find that a neighbourhood size of n = 10
gives the highest donation rate, but that population size has
little influence on the donation rate.

5. RELATED WORK AND CONCLUSIONS
In this paper we have presented and demonstrated a tag-
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based mechanism for supporting cooperation in the presence
of cheaters. Other existing work on tag-based cooperation
focuses on other aspects and does not consider cheaters as
we define them. For example Jansen and van Baalen [10] in-
vestigate the effect of tag space size (i.e. the set of possible
values for tags), and find that a relatively large tag space is
required to allow cooperation to persist over generations in
weakly structured populations. In this paper we also use a
large tag space, by allowing tags to take any value in the in-
terval [0, 1]. Masuda and Ohtsuki [12] describe a mechanism
for improving cooperation in populations containing agents
that are permitted to have a negative tolerance (i.e. agents
that will not cooperate with others that have an identical
tag). Their approach allows agents to observe the tolerance
of others, and not cooperate with those that have a negative
tolerance, thereby causing such agents to be unsuccessful
and not reproduce. In this paper, we do not assume that
agents can observe the tolerance of others, but our mecha-
nism is designed to cope with non-cooperative agents in the
form of cheaters. Matlock and Sen [13, 14] generalise the tag
matching mechanism to enable cooperation between differ-
ent groups of (non-cheating) individuals with different tags.
They use tag matching patterns (where tags are strings of
bits against which pattern matching is performed), payoff
sharing for agents to share payoffs with their “opponent”,
and modified reproduction and mutation mechanisms that
preserve tag matching patterns. In this paper we focus on
the issue of cheaters, and do not consider cooperation be-
tween different social groups, and although we allow cooper-
ation between individuals with different tags, as per RCA we
view these agents to be part of the same group (i.e. sharing
the same tag within some tolerance threshold).

The mechanism presented in this paper supports coop-
eration in populations of autonomous self-interested agents,
some of whom may be cheaters, without requiring reciprocity.
Our approach adds a novel technique for neighbourhood
rewiring to Griffiths’ context assessment modification [5] of
RCA’s approach. We also presented and evaluated a num-
ber of rewiring strategies. Our results show that cooperation
can be improved by enabling agents to change their neigh-
bour connections, in particular by removing connections to
the worst neighbours and replacing them with connections
to new neighbours. The best results are obtained by consid-
ering the experiences of others, by connecting to neighbours
with whom others have had positive experiences. We also
found that it is better to consider the experiences of several
other agents rather than those of a single agent. Our results
show that context assessment and rewiring techniques both
improve cooperation, and that moderate values of context
influence and rewiring proportion give the best results.

There are several areas of ongoing work. We intend to con-
tinue our experimental evaluation to further understand the
relationships between the parameters that define an agent’s
environment and behaviour. Previous tag-based approaches
give evidence that mutation rate influences whether cooper-
ative behaviour can be established [20], and that tag space
size is important [10]. We aim to investigate how these fac-
tors, among others, influence cooperation in our approach.
We will also investigate different initial topologies, and how
these evolve, with a view to evaluating our approach in a
mobile ad-hoc communication environment in which agents
can influence, but not completely control, their neighbour-
hoods by moving around the environment.
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